4.5 Article

A biologically based neural system coordinates the joints and legs of a tetrapod

Journal

BIOINSPIRATION & BIOMIMETICS
Volume 10, Issue 5, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1748-3190/10/5/055004

Keywords

neural controller; rat; simulation; central pattern generator; inter-leg coordination

Ask authors/readers for more resources

A biologically inspired neural control system has been developed that coordinates a tetrapod trotting gait in the sagittal plane. The developed neuromechanical system is used to explore properties of connections in inter-leg and intra-leg coordination. The neural controller is built with biologically based neurons and synapses, and connections are based on data from literature where available. It is applied to a planar biomechanical model of a rat with 14 joints, each actuated by a pair of antagonistic Hill muscle models. The controller generates tension in the muscles through activation of simulated motoneurons. The hind leg and inter-leg control networks are based on pathways discovered in cat research tuned to the kinematic motions of a rat. The foreleg network was developed by extrapolating analogous pathways from the hind legs. The formulated intra-leg and inter-leg networks properly coordinate the joints and produce motions similar to those of a walking rat. Changing the strength of a single inter-leg connection is sufficient to account for differences in phase timing in different trotting rats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available