4.7 Article

Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite

Journal

COMPOSITES PART B-ENGINEERING
Volume 149, Issue -, Pages 22-30

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2018.05.009

Keywords

Carbon fiber; Laminates; Mechanical testing; Fracture toughness

Funding

  1. Council of Scientific and Industrial Research, New Delhi, India [MLP218112]

Ask authors/readers for more resources

In this work, the hybridization effects of hydrazine reduced graphene oxide (rGO) on the inter-laminar shear strength (ILSS), impact strength, and in-plane fracture toughness of symmetric type carbon fiber/epoxy composite (CF/epoxy) laminates were investigated. The composite laminates were fabricated through the vacuum assisted resin transfer molding (VARTM) process. At 0.2 wt% of rGO loading, the CF/epoxy composites showed the best load carrying capacity among the developed laminates. ILSS, impact strength, and critical stress intensity factor (K-IC) were enhanced by similar to (84, 100, and 33) %, respectively, in the case of rGO (0.2 wt%) filled CF/epoxy composite specimens, as compared to CF/epoxy composite. The consumed fracture energy of rGO (0.2 wt %)/CF/epoxy increased, as compared to the rGO (0.4 wt%)/CF/epoxy composite. The fracture surfaces obtained from field emission scanning electron microscopy of the developed composites showed compatible dispersion of rGO in the epoxy matrix, and branched fracture of the specimens. This study suggests that the rGO nanofiller might be used as a matrix modifier to resist matrix fracture, as well as fiber fracture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available