4.7 Article

Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers

Journal

COMPOSITE STRUCTURES
Volume 194, Issue -, Pages 575-583

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2018.04.007

Keywords

Biocomposites; Natural fibers; Sisal fibers; Ecofriendly matrixes

Ask authors/readers for more resources

The increasing interest about eco-sustainable materials in the industrial production (automotive, civil construction, packaging), has led to the increase of the research works dealing with biocomposites. However, until now the most attention has been devoted to the development of short fiber biocomposites for non-structural applications, whereas only a few works have considered high performance biocomposites for structural applications. Consequently, the development of structural biocomposites from robust natural fibers, as sisal fibers, is a result expected from the scientific community, but not yet achieved. In order to give a contribution to the implementation of high performance biocomposites constituted by a green matrix reinforced by sisal fibers, the present work proposes a manufacturing process that allows to obtain good quality unidirectional biocomposites with fiber volume fraction up to 70%. In detail, it uses unidirectional stitched fabrics, properly obtained in laboratory from optimized fibers, and a curing under a proper pressure cycle. The comparison with independent data reported in literature, has evidenced how the proposed biocomposites exhibit mechanical properties higher than most of biocomposites described in literature, so that they can advantageously substitute not only materials as steel, aluminum and glass fiber reinforced plastics, but also other biocomposites reinforced by more expensive fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available