4.6 Article

Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio)

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpc.2018.05.004

Keywords

BPA analogues; Bisphenol F (BPF); Zebrafish embryos/larvae; Sex determination; Sex differentiation; Aromatase

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20151100]
  2. National Natural Science Foundation of China [21507038]

Ask authors/readers for more resources

Bisphenol F (BPF) has become a predominant bisphenol contaminant in recent years. It has significant estrogenic properties in both in vivo and in vitro studies. We have previously studied the disrupting mechanisms of BPF on the hypothalamic pituitary gonadal axis of adult zebrafish. However, the effects of BPF exposure on development and sexual differentiation of zebrafish embryos/larvae remain unclear. To determine the effects of BPF on the critical stage of sex differentiation in zebrafish, zebrafish embryos/larvae were exposed to 1, 10, 100, and 1000 mu g/L BPF from fertilization to 60 days post-fertilization (dpf). Developmental malformations were induced by exposure to BPF from 2 h post-fertilization (hpf), with a LC50 of 10,030 mu g/L at 96 hpf and 9391 mu g/L at 120 hpf. Long-term exposure during sex differentiation tended to result in a female sex ratio bias. Histological analyses at 60 dpf indicated that the development of ovo-testes and immature ovaries was induced by 100 and 1000 mu g/L BPF. Homogenate testosterone levels decreased and 17 beta-estradiol levels increased in zebrafish in a concentration-dependent manner. BPF exposure suppressed gene expression of double sex, Mab3-related transcription factor 1(dmrt1), fushi tarazu factor Id (ff1d), sry-box containing gene 9a (sox9a) and anti-Mullerian hormone (amh); induced expression of the forkhead box L2 transcription factor (foxl2), leading to increased expression of aromatase (cyp19 alpha 1 alpha), which promoted production of estrogens, and further caused phenotypic feminization of zebrafish. These results suggest that developmental exposure to BPF has adverse effects on sexual differentiation, and the results were useful for a BPF risk assessment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available