4.7 Article

Role of induced axial acoustics in transverse acoustic flame response

Journal

COMBUSTION AND FLAME
Volume 195, Issue -, Pages 140-150

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2017.12.035

Keywords

Swirl flame; Transverse acoustics; Combustion instability; Flame response

Funding

  1. Pratt Whitney
  2. Air Force Office of Scientific Research [FA9550-16-1-0442]

Ask authors/readers for more resources

This paper addresses the mechanisms through which transverse acoustic oscillations excite unsteady heat release. Forced and self-excited transverse acoustic instability studies to date have strong coupling between the transverse and axial acoustic fields near the flame. This is significant, as studies suggest that it is not the transverse disturbances themselves, but rather the induced axial acoustic disturbances, that control the bulk of the heat release response. This paper presents results from an experiment that controls the relative amplitudes of transverse and axial disturbances and measures the flow field and heat release response for an acoustically compact, swirling flame. 5 kHz, simultaneous sPIV and OH-PLIF measured the flow field and flame edge, and OH center dot chemiluminescence measured the relative heat release. Experiments performed with essentially the same transverse acoustic wave field, but with and without axial acoustics, show that significant heat release oscillations are only excited in the former case. The results show that the axial disturbances are the dominant cause of the heat release oscillations. These observations support the theory that the key role of the transverse motions is to act as the clock for the instability, setting the frequency of the oscillations while having a negligible direct effect on the actual heat release fluctuations. They also show that transverse instabilities can be damped by either actively canceling the induced axial acoustics in the nozzle (rather than the much larger energy transverse combustor disturbances), or by passively tuning the nozzle impedance to drive an axial acoustic velocity node at the nozzle outlet. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available