4.7 Article

Modeling soot formation from solid complex fuels

Journal

COMBUSTION AND FLAME
Volume 196, Issue -, Pages 265-283

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2018.06.020

Keywords

Soot formation; Coal; Biomass; Method of moments

Funding

  1. Department of Energy, National Nuclear Security Administration [DE-NA0002375]
  2. United States Department of Agriculture Forest Service through the Rocky Mountain Research Station

Ask authors/readers for more resources

A detailed model is proposed for predicting soot formation from complex solid fuels. The proposed model resolves two particle size distributions, one for soot precursors and another for soot particles. The precursor size distribution is represented with a sectional approach while the soot particle-size distribution is represented with the method of moments and an interpolative closure method is used to resolve fractional methods. Based on established mechanisms, this model includes submodels for precursor coagulation, growth, and consumption, as well as soot nucleation, surface growth, agglomeration, and consumption. The model is validated with comparisons to experimental data for two systems: coal combustion over a laminar flat-flame burner and biomass gasification. Results are presented for soot yield for three coals at three temperatures each, and for soot yield from three types of biomass at two temperatures each. These results represent a wide range of fuels and varying combustion environments, demonstrating the broad applicability of the model. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available