4.6 Article

Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfa.2017.12.004

Keywords

Polyelectrolyte brush; Controllable adsorption; Surface forces; Antifouling; Adhesion

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation
  3. Canada Research Chairs Program
  4. China Scholarship Council
  5. Alberta Innovates-Technology Futures

Ask authors/readers for more resources

Adsorption and desorption of biomolecules on/from polyelectrolyte surfaces play a critical role in numerous biomedical and engineering applications. Though some weak polyelectrolytes have been developed for protein adsorption and desorption by regulating the salinity and pH, limited reports are available about the regeneration of strong polyelectrolyte surfaces between protein-attractive and protein-repulsive states, which is highly desirable but challenging to realize as it is more difficult to fully release the pre-adsorbed proteins from strong polyelectrolytes due to their permanent charges comparing to weak polyelectrolytes. Here we report a strategy to facilely tune the resistance to nonspecific protein adsorption onto a charged cationic poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMTAC) or anionic Poly(3-sulfopropyl methacrylate potassium salt) (PSPMA)) strong polyelectrolyte brush coating via salinity adjustment. It has been demonstrated that the charged polyelectrolyte coating displays strong adhesion to proteins at low salinity (e.g., 0.1 mM NaCl) but proteinre-pellent property at high salinity (e.g., 1.0 M NaCl). The adsorbed proteins on the strong polyelectrolyte coatings under low salinity condition could be readily removed via rinsing with high-salinity water, demonstrating the excellent surface regeneration capability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available