4.3 Review

Oxidative Stress: Major Threat in Traumatic Brain Injury

Journal

CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS
Volume 17, Issue 9, Pages 689-695

Publisher

BENTHAM SCIENCE PUBL
DOI: 10.2174/1871527317666180627120501

Keywords

Traumatic brain injury; oxidative stress; glutamate excitotoxicity; mitochondrial dysfunction; secondary injury; biochemical

Ask authors/readers for more resources

Background & Objective: Traumatic Brain Injury (TBI) is one of the major causes of mortality and morbidity worldwide. It represents mild, moderate and severe effects of physical assault to brain which may cause sequential, primary or secondary ramifications. Primary injury can be due to the first physical hit, blow or jolt to one of the brain compartments. The primary injury is then followed by secondary injury which leads to biochemical, cellular, and physiological changes like blood brain barrier disruption, inflammation, excitotoxicity, necrosis, apoptosis, mitochondrial dysfunction and generation of oxidative stress. Apart from this, there is also an immediate increase in glutamate at the synapses following severe TBI. Excessive glutamate at synapses in turn activates corresponding NMDA and AMPA receptors that facilitate excessive calcium influx into the neuronal cells. This leads to the generation of oxidative stress which further leads to mitochondrial dysfunction, lipid peroxidation and oxidation of proteins and DNA. As a consequence, neuronal cell death takes place and ultimately people start facing some serious disabilies. Conclusion: In the present review we provide extensive overview of the role of reactive oxygen species (ROS)-induced oxidative stress and its fatal effects on brain after TBI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available