4.7 Article

Effect of binder on the physical stability and bactericidal property of titanium dioxide (TiO2) nanocoatings on food contact surfaces

Journal

FOOD CONTROL
Volume 57, Issue -, Pages 82-88

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodcont.2015.04.009

Keywords

TiO2; Antimicrobial coating; Physical stability; Binders; Escherichia coli O157:H7

Funding

  1. Agriculture and Food Research Initiative grant from the USDA National Institute of Food and Agriculture, Food Safety: Food Processing Technologies [2011-68003-30012, A4131]

Ask authors/readers for more resources

TiO2 is a promising photocatalyst for use in food processing environment as an antimicrobial coating. The purpose of this study was to determine the effect of different binding agents on the physical stability and bactericidal property of TiO2 nanocoatings created on stainless steel surfaces. A total of six different coating suspensions were prepared by mixing TiO2 (Aeroxide (R) P-25) nanoparticles (NPs) with three different types of binders (Shellac (A), polyuretahne (B), and polycrylic (C)) at a 1:4 to 1:16 NP to binder weight ratio. Bactericidal activity of these TiO2 coatings against Escherichia coli O157:H7 (5-strain) was determined at three different UV-A light intensities (0.25, 0.50 and 0.75 mW/cm(2)) for 3 h. The type of binder used in the coating had a significant effect on the log reduction of E. coli O157:H7. TiO2 coatings with binder C showed highest reduction (>4 log CFU/cm(2)) followed by TiO2 coating with binder B and A. Increasing the binder concentration in the formulation from a 1:4 to 1:16 weight ratio decreased the log reduction of E. coli O157:H7. Increasing the UV-A light intensity from 0.25 to 0.75 mW/cm(2) increased the log reduction of bacteria for all the TiO2 coatings. The physical stability of the TiO2 coatings was determined using ASTM procedures. TiO2 coatings with binder B showed highest adhesion strength and scratch hardness when compared to coatings with other binders. However, on repeated use experiments (1, 3, 5, and 10 times), TiO2 coatings with binder C were found to be physically more stable and able to retain their original bactericidal property. The results of this study showed promise in developing durable TiO2 coatings with strong photocatalytic bactericidal property on food contact surfaces using appropriate binding agents to help ensure safe food processing environment. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available