4.6 Article

Remote and local influences in forecasting Pacific SST: a linear inverse model and a multimodel ensemble study

Journal

CLIMATE DYNAMICS
Volume 52, Issue 5-6, Pages 3183-3201

Publisher

SPRINGER
DOI: 10.1007/s00382-018-4323-z

Keywords

Linear inverse model; Predictability; Sea surface temperature; Timescale interactions; NMME

Funding

  1. National Science Foundation [OCE1419306]
  2. National Oceanic and Atmospheric Administration (NOAA-MAPP) [NA17OAR4310106]
  3. Brazilian National Council for Scientific and Technological Development (CNPq) [221222/2014-6]

Ask authors/readers for more resources

A suite of statistical linear inverse models (LIMs) are used to understand the remote and local SST variability that influences SST predictions over the North Pacific region. Observed monthly SST anomalies in the Pacific are used to construct different regional LIMs for seasonal to decadal predictions. The seasonal forecast skills of the LIMs are compared to that from three operational forecast systems in the North American Multi-Model Ensemble (NMME), revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The data are also bandpass filtered into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. Moreover, we investigate the influence of the tropics and extra-tropics in the predictability of the SST over the region. The Extratropical North Pacific seems to be a source of predictability for the tropics on seasonal to interannual time scales, while the tropics enhance the forecast skill for the decadal component. These results indicate the importance of temporal scale interactions in improving the predictions on decadal timescales. Hence, we show that LIMs are not only useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available