4.3 Article

Infrared absorbance spectroscopy of aqueous proteins: Comparison of transmission and ATR data collection and analysis for secondary structure fitting

Journal

CHIRALITY
Volume 30, Issue 8, Pages 957-965

Publisher

WILEY
DOI: 10.1002/chir.23002

Keywords

attenuated total reflectance; ATR correction; refractive index; depth of penetration

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/F011199/1]
  2. Marie Curie Initial Training Network, European Commission
  3. Engineering and Physical Sciences Research Council [EP/F500378/1, EP/K007394/1, EP/L015307/1]
  4. BBSRC [BB/F011199/1] Funding Source: UKRI
  5. EPSRC [EP/K007394/1] Funding Source: UKRI

Ask authors/readers for more resources

Attenuated total reflectance (ATR) infrared absorbance spectroscopy of proteins in aqueous solution is much easier to perform than transmission spectroscopy, where short path-length cells need to be assembled reproducibly. However, the shape of the resulting ATR infrared spectrum varies with the refractive index of the sample and the instrument configuration. Refractive index in turn depends on the absorbance of the sample. In this work, it is shown that a room temperature triglycine sulfate detector and a ZnSe ATR unit can be used to collect reproducible spectra of proteins. A simple method for transforming the protein ATR spectrum into the shape of the transmission spectrum is also given, which proceeds by approximating a Kramers-Kronig-determined refractive index of water as a sum of four linear components across the amide I and II regions. The light intensity at the crystal surface (with 45 degrees incidence) and its rate of decay away from the surface is determined as a function of the wave number-dependent refractive index as well as the decay of the evanescent wave from the surface. The result is a single correction factor at each wave number. The spectra were normalized to a maximum of 1 between 1600 cm(-1) and 1700 cm(-1) and a self-organizing map secondary structure fitting algorithm, SOMSpec, applied using the BioTools reference set. The resulting secondary structure estimates are encouraging for the future of ATR spectroscopy for biopharmaceutical characterization and quality control applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available