4.5 Article

Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers

Journal

CHINESE JOURNAL OF POLYMER SCIENCE
Volume 36, Issue 12, Pages 1342-1352

Publisher

SPRINGER
DOI: 10.1007/s10118-018-2143-6

Keywords

Imidazolium-based ionomer; Poly(lactic acid); Brominated poly(isobutylene-co-isoprene); Toughening; Blend

Funding

  1. National Natural Science Foundation of China [51573130]

Ask authors/readers for more resources

Imidazolium-based elastomeric ionomers (i-BIIR) were facilely synthesized by ionically modified brominated poly(isobutylene-co-isoprene) (BIIR) with different alkyl chain imidazole and thoroughly explored as novel toughening agents for poly(lactic acid) (PLA). The miscibility, thermal behavior, phase morphology and mechanical property of ionomers and blends were investigated through dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile and impact testing. DMA and SEM results showed that better compatibility between the PLA and i-BIIR was achieved compared to the PLA/unmodified BIIR elastomer. A remarkable improvement in ductility with an optimum elongation at break up to 235% was achieved for the PLA/i-BIIR blends with 1-dodecylimidazole alkyl chain (i-BIIR-12), more than 10 times higher than that of pure PLA. The impact strengths of PLA were enhanced from 1.9 kJ/m(2) to 4.1 kJ/m(2) for the PLA/10 wt% i-BIIR-12 blend. Toughening mechanism had been established by systematical analysis of the compatibility, intermolecular interaction and phase structures of the blends. Interfacial cavitations initiated massive shear yielding of the PLA matrix owing to a suitable interfacial adhesion which played a key role in the enormous toughening effect in these blends. We believed that introducing imidazolium group into the BIIR elastomer was vital for the formation of a suitable interfacial adhesion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available