4.7 Article

Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos

Journal

CHEMOSPHERE
Volume 209, Issue -, Pages 892-900

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.06.143

Keywords

Cadmium; Halophyte; Phytoremediation; Polyamines; Salinity; Zinc

Funding

  1. CSC (China scholarship council)

Ask authors/readers for more resources

Salt marshes are major sinks for heavy metals where plants are often exposed to polymetallic contamination and high salinity. Seedlings from the wetland halophyte plant species Kosteletzkya pentacarpos were exposed during three weeks to nutrient solution containing 10 mu M CdCl2, 100 mu M ZnCl2 or a combination of the two metals (Cd + Zn) in the presence or absence of 50 mM NaCl. Synthesis of the senescing hormone ethylene was quantified together with the concentration of protecting polyamines (spermidine and spermine) and their precursor putrescine and analyzed in relation to senescence markers (soluble protein, malondialdehyde, chlorophyll content and assessment of cell membrane stability). Salinity reduced the deleterious impact of heavy metals on plant growth and decreased accumulation of the pollutants in the plants. Heavy metals increased ethylene synthesis but NaCl decreased it in plants exposed to Cd or to the combined treatment (Cd +Zn- ) but not in plants exposed to Zn alone. Putrescine increased while spermine and spermidine decreased in Cd-treated plants. Zinc had only a marginal impact on polyamine concentration. The highest putrescine and spermine concentrations were observed in plants exposed to the combined treatment. The inhibitor of ethylene synthesis (AVG; aminovynilglycine) partially restored plant growth, reduced putrescine content and increased spermidine and spermine concentration, leading to an attenuation of senescence, mainly in Cd-treated plants. Combined treatment induced a specific physiological status in K. pentacarpos which could not be fully explained by an additive effect of Cd and Zn. Results are discussed in relation to specificities of heavy metals impacts on plant response. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available