4.7 Article

Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity

Journal

CHEMOSPHERE
Volume 198, Issue -, Pages 1-12

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.01.070

Keywords

Photocatalysis; BiVO4; Graphene; SPR; Interface; Palladium

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. China Scholarship Council

Ask authors/readers for more resources

A ternary composite. Pd-rGO-BiVO4, was fabricated with reduced graphene oxide (rGO) and palladium nanoparticles decorated on the surface of BiVO4. As-prepared samples were tested for the photocatalytic degradation of phenol under visible light irradiation. Enhancement was observed for the ternary structure, merits of which may be as follows: 1) rGO wrapped BiVO4 facilitated the photogenerated electrons transfer, 2) palladium nanoparticles served as electron acceptors, 3) palladium nanoparticles on the surface were capable of absorbing visible light photons. The uptake of photogenerated charge carriers would improve their separation and more oxidative species may be produced that can participate in the degradation of organics. Due to the SPR effect of palladium nanoparticles on the surface, the harvesting capacity of the photocatalyst to absorb visible light photons was increased, and thus its photocatalytic activity was improved. It should be noted that phenol was more easily adsorbed by rGO due to the pi-pi interaction between rGO and phenol, which also contributed to the enhancement in the photocatalytic activity. This work provides new evidence to confirm the advances of ternary structures applied in the photocatalytic removal of phenolic compounds in water under visible light irradiation. (C) 2018 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available