4.7 Article

Interspecific differences in biochemical and behavioral biomarkers in endogeic earthworms exposed to ethyl-parathion

Journal

CHEMOSPHERE
Volume 202, Issue -, Pages 85-93

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.03.060

Keywords

Behavioral biomarkers; Esterases; Aporrectodea caliginosa; Allolobophora chlorotica; organophosphorus

Ask authors/readers for more resources

Earthworms are common organisms in the soil toxicity-testing framework, and the epigeic Eisenia andrei and E. fetida are the recommended species. However, Eisenia species are rarely found in agricultural soils and recent studies have pointed out endogeic species are more sensitive to pesticides than Eisenia. Allolobophora chlorotica and Aporrectodea caliginosa are two endogeic soil-dwelling species that are abundant in the agroecosystem. However, knowledge on pesticide impact on this ecological group of earthworms is still incipient. Herein, we compared the biochemical (acetylcholinesterase [AChE) and carboxylesterase [CbE] activities) and behavioral (burrowing, casting and feeding) biomarker responses of these two endogeic earthworm species exposed for 7 days to soils contaminated with 0.1, 1 and 10 mg kg(-1) ethyl-parathion. The results showed marked species-specific differences in both groups of biomarkers, suggesting A. caliginosa the most sensitive species to this organophosphorus pesticide under the exposure conditions in this study. Moreover, an in vitro inhibition trial with ethyl-paraoxon evidenced a higher sensitivity of A. caliginosa AChE activity compared with that of A. chlorotica. This finding suggested that this molecular target endpoint could contribute to the interspecific differences of behavioral responses rather than CbE activity; this latter considered a potent mechanism of OP removal. Our results suggest the inclusion of more than one endogeic earthworm species to assess toxicity from organophosphorus insecticides. However, the use of A. caliginosa in the environmental risk assessment framework of organophosphorus contamination is highly recommended because of its higher sensibility to this class of pesticides, in addition to its abundance in the agroecosystem. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available