4.7 Article

Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study

Journal

CHEMOSPHERE
Volume 197, Issue -, Pages 569-575

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2018.01.041

Keywords

Five-membered SAs; Photolysis mechanisms; DFT; Multi-step S-; N cleavage

Funding

  1. National Natural Science Foundation of China [21137001, 21325729]

Ask authors/readers for more resources

Quantum chemical calculations have been performed to investigate the photolysis mechanism of relatively susceptible sulfonamide moiety of five-membered sulfonamide (SA) antibiotics, such as sulfamethoxazole, sulfisoxazole, sulfamethizole, and sulfathiazole. The results show that the center dot OH-mediated indirect photolysis of sulfonamide linkage has two possible multi-step reaction pathways, viz., H-abstraction and electrophilic C1-attack, which is contrast to previously reported one-step cleavage manner. The newly proposed indirect photolysis mechanisms could be applied to six-membered SAs such as sulfadimethoxine. It has been found that the dissociation of S-N bond is easier in direct photolysis than center dot OH-mediated indirect photolysis. Wiberg bond index and LUMO-HOMO energy gap are investigated to clarify the origin of the discrepant reactivity of sulfonamide moiety of SAs at singlet and triplet states. In comparison with singlet states, the S-N bond of SAs is weaker at triplet states of SAs and thus results in higher reactivity of sulfonamide moiety, as also suggested by smaller LUMO-HOMO energy gap. This study could add better understanding to the photolysis mechanisms of SAs, which would be also helpful in utilizing quantum chemistry calculation to investigate the behavior and fate of antibiotics in the aquatic environment. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available