4.7 Article

Investigation of nanoscale zerovalent iron-based magnetic and thermal dual-responsive composite materials for the removal and detection of phenols

Journal

CHEMOSPHERE
Volume 195, Issue -, Pages 472-482

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.12.093

Keywords

Nanoscale zerovalent iron; Fe@SiO2@PNIPAM; Phenols; Adsorption; MSPE-HPLC

Funding

  1. National Natural Science Foundation of China [21377167, 21677177]

Ask authors/readers for more resources

In this study, well-defined magnetic and thermal dual-responsive nanomaterials were synthesized, which contained ultrafine core-shell Fe@SiO2 nanoparticles as magnetic core and poly(N-isopropylacrylamide) (PNIPAM) as thermosensitive outer shell. The fabricated nanoparticles were characterized and investigated for the adsorption of four phenolic compounds, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-OP) and 4-n-nonylphenol (4-NP). The experimental results demonstrated that the excellent adsorption rates were attributed to hydrophobic effect, hydrogen-bonding interaction; and electrostatic attraction. The adsorption process followed pseudo-second-order kinetics model and nonlinear isotherms, indicating heterogeneous adsorption process. The adsorption efficiency of 4-NP using Fe@SiO2@PNIPAM was more than 90% under optimized condition within 2 h. The determined maximum adsorption amounts of BPA, TBBPA, 4-OP and 4-NP were 2.43, 6.83, 24.75, and 4934 mg g(-1), respectively. Meanwhile, a magnetic solid phase extraction (MSPE) method with Fe@SiO2@PNIPAM was established to determine these four compounds simultaneously. Under the optimal conditions, the linearity ranges were in the range of 2-200, 2-300, 2-100 and 2-100 mu g L-1 for BPA, 4-OP, TBBPA, and 4-NP, respectively, and the detection limits were in the range of 0.58-0.76 mu g L-1, respectively. The applicability of the proposed method was evaluated by analyzing three fresh water samples, and satisfactory spiked recoveries in the range 70.9-119.9% were achieved. It was proved that these adsorbents could be easily collected and recycled owing to the appropriate magnetism. The results also demonstrated that the as-prepared adsorbents had promising potential in the enrichment and analysis of detrimental organic pollutants from water. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available