4.7 Article

Response mechanisms to joint exposure of triclosan and its chlorinated derivatives on zebrafish (Danio rerio) behavior

Journal

CHEMOSPHERE
Volume 193, Issue -, Pages 820-832

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.11.106

Keywords

Joint exposure to triclosan and its derivatives; Behavioral endpoint; Neurodevelopmental-related genes; Histopathological observation; Biomarker and estrogen receptor

Funding

  1. National Natural Science Foundation of China [31770552, 21577107]
  2. Natural Science Foundation of Zhejiang Province [LY17C030004]
  3. Xinmiao Talent Project of Zhejiang Province [2017R413086]
  4. Public Benefit Project of Wenzhou City [Y20150001]

Ask authors/readers for more resources

Triclosan (TCS), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,4-dichlorophenol (2,4-DCP) frequently co-exist in real-world aquatic environments; the latter two contaminants contributing to TCS photolytic products or chlorinated derivatives. There is a paucity of information regarding their joint toxicity to aquatic organisms leading us to study their effects on the swimming behavior of zebrafish (Danio rerio). Herein, we reported that 0.28 mg/L TDT exposure (mixtures of TCS, 2,4,6-TCP and 2,4-DCP) enhanced 24-hpf embryonic spontaneous movement frequency, 96-hpf larval activity; however, the 0.56 and 1.12 mg/L TDT treatments decreased all of these behavioral endpoints. All adult behavioral tests demonstrated that chronic TDT exposure (0.14 mg/L) led to hyperactivity and restlessness in adult zebrafish. A 0.14 mg/LTD DATE /@ M/d/yyyy 11/21/2017T treatment led to anxiety-like behavior in a bottom dwelling test and excessive panic and low hedging capacity in a conditioned place preference test. Social interaction test demonstrated that zebrafish preferred quiet and isolated space in response to TDT stress. Zebrafish memory was significantly decreased in a T-maze experiment. Whole mount in situ hybridization of pax2a and bcl2111 genes revealed that their differential expression in the brain and skeleton were related to the corresponding phenotypic behavioral abnormality. A series of biomarker and estrogen receptor assays demonstrated that TDT acute exposure caused abnormal energy metabolism and neurological diseases. AO staining revealed that TDT exposure produced vascular ablation in the head, as well as the occurrence of massive apoptosis in the brain. TEM observation showed pyknosis of nucleus following TDT exposure. These results allow assessment of mechanisms for zebrafish abnormal behavior in response to TDT exposure, and are useful for early intervention and gene therapy of contaminant-induced diseases. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available