4.1 Article

Quantum chemical investigation of thermochemistry in Calvin cycle

Journal

JOURNAL OF CHEMICAL SCIENCES
Volume 127, Issue 12, Pages 2231-2240

Publisher

INDIAN ACAD SCIENCES
DOI: 10.1007/s12039-015-0980-1

Keywords

Calvin cycle; driving force; PCM; H-bond

Funding

  1. Council of Scientific and Industrial Research [01/2481/11/EMR-II]
  2. I.I.T. Bombay computer center

Ask authors/readers for more resources

This work aims to verify the experimental thermochemistry of the reactions involved in Calvin cycle that produces glucose equivalent by using products from the light-activated reactions in chloroplast. The molecular geometry of each involved species in water has been optimized by density functional theory using SCRF-PCM methodology at M06-2X/6-311 ++G(3df,3pd) level. The thermal correction to Gibbs free energy of each solute has been calculated at the same level of theory. An explicit accounting of the intramolecular and intermolecular hydrogen bonding has been made for each solute molecule by using theoretically determined values from different sources. These data have been added together to obtain the standard Gibbs free energy G for each molecule in solution. Finally, the free energy change Delta G of each involved reaction has been determined using the experimental concentrations under physiological conditions. The calculated Delta G values are generally in good agreement with the experimentally found free energy changes, with only a few relatively large deviations. Five regulating steps with moderately large and negative Delta G have been identified, whereas only three of them were clearly identified from experiment. We particularly show that the steps involving the formation of G3P from 3-PG and the regeneration of RuBP from Ru5P are thermodynamically strongly favored, and therefore, they take part in driving the metabolic process. We have illustrated Calvin cycle by vividly distinguishing the controlling steps from the potentially reversible reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available