3.8 Proceedings Paper

A Hexapod Walking Micro-robot with Artificial Muscles

Journal

MICROACTUATORS AND MICROMECHANISMS
Volume 30, Issue -, Pages 99-120

Publisher

SPRINGER-VERLAG BERLIN
DOI: 10.1007/978-3-319-15862-4_9

Keywords

Walking robot; Leg mechanisms; Shape Memory Alloys; Artificial muscles

Ask authors/readers for more resources

As walking robots are requested to perform tasks in rough terrain, the development of actuators capable to flexibly adapt to the unstructured environment becomes more and more necessary. The conventional mechanisms with stiff joints make the robots more complex, heavy, large and expensive. Recent research in the field of materials discovered some new light and resistant alloys, which allow building compact, light and resistant articulated mechanisms. Such intelligent materials, called also artificial muscles, could be used to develop new actuators. Shape Memory Alloys are a category of artificial muscles which can be used as actuators for a walking robot. Even if these artificial muscles can exhibit large changes in shape when heated and cooled, only one part of their deformation can be used, if we want to maximize the actuator life. This is why smart mechanisms that can convert the small strain of the wire into large motion are necessary. In this paper, an example of using Shape Memory Alloys as actuators for a hexapod walking micro-robot is presented. Leg mechanisms that can convert the small strain of these actuators in large motion are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available