4.8 Article

Structural and Electrochemical Characteristics of Ca-Doped Flower-like Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries

Journal

CHEMISTRY OF MATERIALS
Volume 30, Issue 3, Pages 671-684

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.7b03847

Keywords

-

Funding

  1. Center for Mesoscale Transport Properties (m2M), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]
  2. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]

Ask authors/readers for more resources

Doped motifs offer an intriguing structural pathway toward improving conductivity for battery applications. Specifically, Ca-doped, three-dimensional flower-like Li4-xCaxTi5O12 (x = 0, 0.1, 0.15, and 0.2) micrometer-scale spheres have been successfully prepared for the first time using a simple and reproducible hydrothermal reaction followed by a short calcination process. The products were experimentally characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge testing. Calcium dopant ions were shown to be uniformly distributed within the LTO structure without altering the underlying flower-like morphology. The largest lattice expansion and the highest Ti3+ ratios were noted with XRD and XPS, respectively, whereas increased charge transfer conductivity and decreased Li+-ion diffusion coefficients were displayed in EIS for the Li4-xCaxTi5O12 (x = 0.2) sample. The x = 0.2 sample yielded a higher rate capability, an excellent reversibility, and a superior cycling stability, delivering 151 and 143 mAh/g under discharge rates of 20C and 40C at cycles 60 and 70, respectively. In addition, a high cycling stability was demonstrated with a capacity retention of 92% after 300 cycles at a very high discharge rate of 20C. In addition, first-principles calculations based on density functional theory (DFT) were conducted with the goal of further elucidating and understanding the nature of the doping mechanism in this study. The DFT calculations not only determined the structure of the Ca-doped Li4Ti5O12, which was found to be in accordance with the experimentally measured XPD pattern, but also yielded valuable insights into the doping-induced effect on both the atomic and electronic structures of Li4Ti5O12.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available