4.8 Article

Luminescence of an Oxonitridoberyllate: A Study of Narrow-Band Cyan-Emitting Sr[Be6ON4]:Eu2+

Journal

CHEMISTRY OF MATERIALS
Volume 30, Issue 9, Pages 3122-3130

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.8b01256

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. National Research Council Canada
  3. Canadian Institutes of Health Research
  4. Province of Saskatchewan
  5. Western Economic Diversification Canada
  6. University of Saskatchewan
  7. NSERC
  8. Canada Research Chair program
  9. Fonds der Chemischen Industrie (FCI)
  10. German Academic Exchange Service (DAAD)

Ask authors/readers for more resources

Oxo- and (oxo)nitridoberyllates show exceptional potential as host lattices for application in illumination grade phosphor converted (pc)LEDs due to their remarkable electronic and structural characteristics, allowing highly efficient narrow-band emission upon doping with Eu2+. Sr[Be6ON4]:Eu2+, the first example of an oxonitridoberyllate phosphor, exhibits narrow-band cyan emission (lambda(em) = 495 nm; full width at half-maximum, fwhm = 35 nm; approximate to 1400 cm(-1)), comparable to the emission of the oxonitridosilicate BaSi2O2N2:Eu2+ (fwhm = 35 nm) or a cyan-emitting primary LED (fwhm = 27 nm). Sr[Be6ON4]:Eu2+ reveals a highly condensed rigid 3D network with a remarkably large degree of condensation [i.e., atomic ratio Be:(O,N)] of kappa = 1.2 that is achieved by interconnection of highly condensed layers of BeN4 tetrahedra by Be2ON6 units via common edges. The crystal structure of Sr[Be6ON4]:Eu2+ was solved on the basis of single-crystal and powder XRD data (C2/c, no. 15, a = 13.9283(14), b = 5.7582(6), c = 4.9908(5) angstrom, beta = 90.195(1)degrees, Z = 4, R-1 = 0.033, wR(2) = 0.065, GoF = 1.046). Sr[Be6ON4]:Eu2+ shows a close structural relationship to other nitride as well as oxide compounds, and therefore closes a structural gap helping to understand relations in Be-containing solid-state materials. The electronic structure of Sr[Be6ON4]:Eu2+ was characterized by X-ray spectroscopy measurements, supported by density functional theory (DFT) calculations. Due to its excellent emission properties, large band gap, rigid 3D network, as well as chemical and thermal stability, Sr[Be6ON4]:Eu2+ is a promising phosphor to close the cyan gap in efficient high-CRI pcLEDs (CRI, color rendering index).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available