4.8 Review

Conductive Polymers: Opportunities and Challenges in Biomedical Applications

Journal

CHEMICAL REVIEWS
Volume 118, Issue 14, Pages 6766-6843

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.6b00275

Keywords

-

Ask authors/readers for more resources

Research pertaining to conductive polymers has gained significant traction in recent years, and their applications range from optoelectronics to material science. For all intents and purposes, conductive polymers can be described as Nobel Prize-winning materials, given that their discoverers were awarded the Nobel Prize in Chemistry in 2000. In this review, we seek to describe the chemical forms and functionalities of the main types of conductive polymers, as well as their synthesis methods. We also present an in-depth analysis of composite conductive polymers that contain various na such as graphene, fullerene, carbon nanotubes, and paramagnetic metal ions. Natural polymers such as collagen, chitosan, fibroin, and hydrogel that are structurally modified for them to be conductive are also briefly touched upon. Finally, we expound on the plethora of biomedical applications that harbor the potential to be revolutionized by conductive polymers, with a particular focus on tissue engineering, regenerative medicine, and biosensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available