4.7 Article

Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 352, Issue -, Pages 277-282

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.07.031

Keywords

Automated flow reactor; Environmental chemistry; Machine learning; Reaction engineering; Sustainable chemistry

Funding

  1. Ernest-Solvay-Foundation
  2. ERASMUS + program
  3. EPSRC
  4. AstraZeneca
  5. University of Leeds
  6. EPSRC [1803783] Funding Source: UKRI

Ask authors/readers for more resources

Automated development of chemical processes requires access to sophisticated algorithms for multi-objective optimization, since single-objective optimization fails to identify the trade-offs between conflicting performance criteria. Herein we report the implementation of a new multi-objective machine learning optimization algorithm for self-optimization, and demonstrate it in two exemplar chemical reactions performed in continuous flow. The algorithm successfully identified a set of optimal conditions corresponding to the trade-off curve (Pareto front) between environmental and economic objectives in both cases. Thus, it reveals the complete underlying trade-off and is not limited to one compromise as is the case in many other studies. The machine learning algorithm proved to be extremely data efficient, identifying the optimal conditions for the objectives in a lower number of experiments compared to single-objective optimizations. The complete underlying trade-off between multiple objectives is identified without arbitrary weighting factors, but via true multi-objective optimization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available