4.7 Article

Photo-assisted degradation of bisphenol A by a novel FeS2@SiO2 microspheres activated persulphate process: Synergistic effect, pathway and mechanism

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 349, Issue -, Pages 683-693

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.05.132

Keywords

Bisphenol A; FeS2; Fenton; Persulphate; SiO2 microspheres

Funding

  1. National Natural Science Foundation of China [21407155, 21777150, 51508116]
  2. Science and Technology Planning Project of Guangdong Province [2015A020215022, 2016B020240006]

Ask authors/readers for more resources

In this study, FeS2@SiO2 microspheres were firstly employed as a heterogeneous catalyst to activate persulfate (PS) for the degradation of bisphenol A (BPA) from aqueous solutions. The most relevant findings revealed that UV irradiation induced a significant improvement in the degradation of BPA by the FeS2@SiO2 microspheres/PS system. Nearly 100% of BPA degradation by the FeS2@SiO2 microspheres/PS/UV system was achieved within 120 min at reaction conditions of 1 mM PS, 0.066 mM BPA, 1.0 g/L FeS2@SiO2 microspheres and pH 3.0. A high performance on the degradation of BPA might be attributable to a synergistic effect between the PS/UV and the FeS2@SiO2 microspheres/PS catalytic processes. It was found that the BPA degradation could be inhibited by the coexisting anions like Cl-, HCO3- and PO43- to different extents at much higher concentrations, whereas NO3 had a negligible effect. Organic acids such as ethylene diamine tetra-acetic acid (EDTA) and oxalic acid (OA) would lead to an enhancement with a lower dosage, whereas a significantly negative effect was observed at much higher dosages. Radical scavenging tests revealed that the SO4 center dot- radicals prevailed over HO center dot. A total of seven intermediates during the degradation of BPA were identified by GC/MS, and a possible reaction pathway and mechanism of BPA degradation by the FeS2@SiO2 microspheres/PS/UV system was proposed. This study demonstrated a simple water treatment method involving the use of low cost natural iron minerals for organic pollutants removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available