4.7 Article

In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 344, Issue -, Pages 469-479

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.03.091

Keywords

CeO2 catalyst; Pyrolysis; MOFs; Mesoporous structure; Toluene oxidation

Funding

  1. Nature Science Foundation of Fujian Province of China [2016J01079, 2016J05049]
  2. Cooperation of Industry-University-Institute and Scientific and Technological Cooperation of Xiamen [3502Z20172025]
  3. One Hundred Talent Project from Chinese Academy of Sciences
  4. Xiamen High-level Overseas Innovation Talent from Xiamen
  5. Key Research Program of Frontier Sciences from Chinese Academy of Sciences [QYZDB-SSW-DQC022]
  6. National Natural Science Foundation of China [21501175]

Ask authors/readers for more resources

Mesoporous CeO2 catalysts (CeO2-MOF) were synthesized by pyrolysis of Ce-MOF precursor (Ce-(1,3,5-benzenetricarboxylic acid) (H2O)(6)). Physicochemical properties of the samples were investigated by means of various techniques including XRD, SEM, TEM, BET, Raman, XPS, H-2-TPR, O-2-TPD and NH3-TPD, and their catalytic performance were evaluated by toluene combustion compared with commercial CeO2 (CeO2-C) and CeO2 prepared by precipitation method (CeO2-P). The results show that CeO2-MOF/350 catalyst (pyrolyzed at 350 degrees C) presents enhanced catalytic activity for toluene oxidation with the conversion of T-10%, T-50% and T-90% at 180, 211, and 223 degrees C, respectively (SV = 20,000 mL/(g h), toluene concentration = 1000 ppm). Especially for high-temperature region, CeO2-MOF/350 catalyst displays much superior ability to rapidly reach to 100% conversion compared to CeO2-C and CeO2-P catalysts which usually result in a much broader temperature region to achieve complete conversion of toluene. The high catalytic performance of CeO2-MOF/350 can be reasonably ascribed to a series of better properties, such as three-dimensional penetrating mesoporous channels, larger specific surface area, smaller average grain size, higher relative percentages of Ce3+/Ce4+ and O-Sur/O-Latt, higher oxygen storage capacity, higher oxygen vacancy concentration, better low temperature reducibility, more active oxygen species and more acid sites. Furthermore, CeO2-MOF/350 catalyst presented excellent resistance to H2O deactivation and temperature change, and in situ DRIFTs study on CeO2-MOF/350 catalyst suggests that toluene degradation is proceeded in consecutive steps via rapid transformation to aldehydic and benzoate species to finally form CO2 and H2O.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available