4.7 Article

Nonlinear bending and instability analysis of bioceramics composed with magnetite nanoparticles: Fabrication, characterization, and simulation

Journal

CERAMICS INTERNATIONAL
Volume 44, Issue 8, Pages 9540-9549

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.02.175

Keywords

Bioceramics; Tissue engineering; Nonlinear instability; Nanocomposites; Nonlinear bending

Ask authors/readers for more resources

Magnetite is a bioresorbable material that has been widely employed in bioengineering domain, drug-delivery operations, and hyperthermia treatment. In the biomedical engineering, the major focus is on the mechanical properties of materials used in orthopedic and dental implants. In the present investigation, beam-type bone implant made of bredigite composed with magnetite nanoparticles (MNPs) is fabricated with a customized three dimensional (3D) printing, the nonlinear bending and postbuckling behaviors of it are studied. To accomplish this purpose, the Young's modulus of the prepared bio-nanocomposite material is obtained experimentally corresponding to different MNP weight fractions and sizes of the nanoparticles as well as their morphology shapes. In order to prepare the bio-nanocomposite material, the planetary high energy ball milling (HEBM) is put to use to mix the bredigite bioceramic powder as a bioactive matrix with various weight fractions of MNPs. After that, based upon a developed analytical solution, the nonlinear bending and instability response of the bio-nanocomposite beam-type bone implant are analyzed corresponding to various MNP weight fractions and morphology shapes of the material. It is found that for the bio-nanocomposite implant with smaller composite crystallite size, the maximum and minimum buckling loads are for irregular and mesoporous morphology shapes, respectively. On the hand, for the bio-nanocomposite bone implant with larger composite particle size, the maximum and minimum buckling loads are related to, respectively, the spongy and porous morphology shapes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available