4.7 Article

Photocatalytic performance of highly transparent and mesoporous molybdenum-doped titania films fabricated by templating cellulose nanocrystals

Journal

CERAMICS INTERNATIONAL
Volume 44, Issue 14, Pages 16647-16653

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.06.091

Keywords

Titania; Thin film; Cellulose; Doping; Photodegradation

Funding

  1. National Institute of Forest Science, Seoul, Korea [2018-78]

Ask authors/readers for more resources

In this paper, the synthesis of mesoporous Mo-doped titania films templated by cellulose nanocrystals (CNCs) and their photocatalytic performance are reported for the first time. The prepared titania composite precursors containing the CNCs and molybdenum chloride were spin-coated on indium tin oxide (ITO) glass substrate, followed by calcining at 400 degrees C for 1 h. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), and UV-vis spectrometer were employed to characterize the phase composition, pore structure, morphology, and optical property of the titania films in relation to CNCs templating and Mo doping. Photocatalytic performances of the titania films were also evaluated on the photodegradation of trichloroethylene under a fluorescent light source. The Mo-doped titania films with CNCs templating were highly transparent and mesoporous, exhibiting only anatase phase, high specific surface areas ranging in 135.4 - 149.0 m(2)/g, and small crystallite sizes of 9.5 - 11.1 nm. The results indicate that Mo ions were successfully doped by substituting for Ti ions in the titania lattice. The Mo doping stabilized the anatase phase and also increased the surface area of the CNCs-templated titania film while decreasing the mean pore width. Notably, the visible light absorption capacity and photocatalytic activity of the CNCs-templated titania films doped with Mo were dramatically greater than those of the pure and the CNCs-templated titania films, which is ascribed to the decreased recombination rate of photoexcited charges and the increased surface area with aids of the CNCs templating and the Mo doping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available