4.7 Article

Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor

Journal

CERAMICS INTERNATIONAL
Volume 44, Issue 10, Pages 11196-11203

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.03.150

Keywords

Lead free piezocomposites; Reitveld; Dielectric; Nanogenerator

Ask authors/readers for more resources

Highly flexible biocompatible nanocomposites comprising of Polyvinylpyrrolidone (PVP) modified Barium Calcium Zirconate Titanate (BCT-BZT) /Polyvinylidene fluoride (PVDF) were fabricated. The crystalline BCT-BZT powders were synthesized by a simple sol-gel method. Rietveld refinement analysis confirmed the coexistence of orthorhombic and tetragonal phase in the synthesized powders. The structural, dielectric and ferro-electric properties of the composites were analysed. Addition of PVP modified BCT-BZT powders was observed to enhance the polar phase in PVDF matrix. The piezoelectric output response as a function of different weight percentage of ceramic powders in the PVDF matrix was investigated. The optimal device with 60wt% PVP modified BCT-BZT powders exhibited maximum peak to peak voltage of 23 V when tested for harnessing waste biomechamcal energy (human hand palm force). The nanogenerator was easily scaled up to 4 x 4 cm and the stored power was utilized for powering fifty five LEDs. The fabricated device is flexible, light- weight and eco-friendly Therefore, it can be explored as a potential candidate for application as self powered sensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available