4.2 Article

Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 47, Issue 2, Pages 864-878

Publisher

S. Karger AG
DOI: 10.1159/000490078

Keywords

-

Categories

-

Ask authors/readers for more resources

BACKGROUND/AIMS:

Recent studies have indicated that exosomes secreted from adipose-derived stem cells (ADSCs) have important effects in the treatment of ischemic injury. However, the treatment mechanism is unclear. This study aimed to investigate whether ADSC-derived exosomes enriched with microRNA (miR)-30d-5p have a protective effect on acute ischemic stroke (AIS).

METHODS:

In the current study, inflammatory factors and miR-30d-5p expression were assessed in 70 subjects with AIS and 35 healthy controls. Exosomes were characterized by transmission electron microscopy and further examined using nanoparticle tracking analyses. A rat model of AIS and an in vitro model of oxygen- and glucose-deprived (OGD) primary microglia were established to study the protective mechanism of exosomes from miR-30d-5p-overexpressing ADSCs in ischemia-induced nerve injury.

RESULTS:

The results showed that following AIS, the expression of inflammatory cytokines increased, while the anti-inflammatory cytokines IL-4, IL-10, and miR-30d-5p decreased both in patients and in animal models. Moreover, in vitro studies demonstrated that suppression of autophagy significantly reduced the OGD-induced inflammatory response. In addition, exosome treatment was more effective in suppressing the inflammatory response by reversing OGD-induced and autophagy-mediated microglial polarization to M1. Furthermore, in vivo studies showed that exosomes derived from ADSCs significantly decreased the cerebral injury area of infarction by suppressing autophagy and promoting M2 microglia/macrophage polarization.

CONCLUSIONS:

Our results suggest that miR-30d-5p-enhanced ADSC-derived exosomes prevent cerebral injury by inhibiting autophagy-mediated microglial polarization to M1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available