4.2 Article

Neuroprotective Mechanisms of Calycosin Against Focal Cerebral Ischemia and Reperfusion Injury in Rats

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 45, Issue 2, Pages 537-546

Publisher

KARGER
DOI: 10.1159/000487031

Keywords

Calycosin.Cerebral; ischemia and reperfusion; Autophagy; Apoptosis; inflammation

Funding

  1. National Natural Science Foundation of China (NSFC) [81460554]
  2. Natural Science Foundation of Guangxi [2015GXNSFBB139006]
  3. Scientific Research Project of Guangxi Higher Education Institutions [KY2015ZD090]

Ask authors/readers for more resources

Background/Aims: Emerging evidence suggests that autophagy plays important roles in the pathophysiological processes of cerebral ischemia and reperfusion injury. Calycosin, an isoflavone phytoestrogen, possesses neuroprotective effects in cerebral ischemia and reperfusion in rats. Here, we investigated the neuroprotective effects of calycosin against ischemia and reperfusion injury, as well as related probable mechanisms behind autophagy pathways. Methods: A cerebral ischemic and reperfusion injury model was established by middle cerebral artery occlusion in male Sprague-Dawley rats. Neurological scores, infarct volumes, and brain water content were assessed after 24 h reperfusion following 2 h ischemia. Additionally, the expression of the autophagy-related protein p62 and NBR1 (neighbor of BRCA1 gene 1), as well as Bcl-2, and TNF-alpha in rat brain tissues was measured by RT-PCR, western blotting and immunohistochemical analyses. Results: The results showed that calycosin pretreatment for 14 days markedly decreased infarct volume and brain edema, and ameliorated neurological scores in rats with focal cerebral ischemia and reperfusion. It was observed that levels of p62, NBR1 and Bcl-2 were greatly decreased, and levels of TNF-alpha significantly increased after ischemia and reperfusion injury. However, calycosin administration dramatically upregulated the expression of p62, NBR1 and Bcl-2, and downregulated the level of TNF-alpha. Conclusions: All data reveal that calycosin exerts a neuroprotective effect on cerebral ischemia and reperfusion injury, and the mechanisms maybe associated with its anti-autophagic, anti-apoptotic and anti-inflammatory action. (c) 2018 The Author(s) Published by S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available