4.8 Article

Pronounced Cosolvent Effects in Polymer:Polymer Bulk Heterojunction Solar Cells with Sulfur-Rich Electron-Donating and Imide-Containing Electron-Accepting Polymers

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 29, Pages 15995-16002

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b04224

Keywords

polymer:polymer solar cells; cosolvents; nanostructure; stability; degradation

Funding

  1. Korean Government [NRF_2015R1A2A2A01003743, 2011-0020264, 2009-0093819, NRF_2014R1A1A3051165, NRF_2014R1A6A3A03055861]
  2. Korean Government (Human Resource Training Project for Regional Innovation_MOE) [NRF_2014H1C1A1066748]
  3. DGIST R&D Program of the Ministry of Science, ICT and Future Planning of Korea [15-EN-03]

Ask authors/readers for more resources

The performance of solar cells with a polymer:polymer bulk heterojunction (BHJ) structure, consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) donor and poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) acceptor polymers, was investigated as a function of cosolvent (p-xylene:chlorobenzene (pXL:CB)) composition ratio. A remarkable efficiency improvement (similar to 38%) was achieved by spin-coating the photoactive blend layer from pXL:CB = 80:20 (volume) rather than pXL alone, but the efficiency then decreased when the CB content increased further to pXL:CB = 60:40. The improved efficiency was correlated with a particular PTB7-Th:P(NDI2OD-T2) donor-acceptor blend nanostructure, evidenced by a fiber-like surface morphology, a red-shifted optical absorption, and enhanced PL quenching. Further device optimization for pXL:CB = 80:20 films yielded a power conversion efficiency of similar to 5.4%. However, these devices showed very poor stability (similar to 15 min for a 50% reduction in initial efficiency), owing specifically to degradation of the PTB7-Th donor-component. Replacing PTB7-Th with a more stable donor polymer will be essential for any application potential to be realized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available