4.8 Article

Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis

Journal

CELL
Volume 172, Issue 3, Pages 409-+

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2017.11.048

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [CO 291/2-3, CO 291/5-1, BE3259/5-1]
  2. Human Frontier Science Program (HFSP) [RGP0013]
  3. Humboldt Postdoctoral scholarship
  4. FAPESP [13/07937-8, 10/50891-0]

Ask authors/readers for more resources

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate-versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4(cys/cys) cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available