4.8 Article

Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes

Journal

CARBON
Volume 139, Issue -, Pages 459-471

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2018.07.026

Keywords

-

Funding

  1. National Natural Science Foundation of China [51531009]
  2. Key Laboratory of Advanced Materials of Yunnan Province [738010094]
  3. Postgraduate Innovation Program of Hunan province [150140012]

Ask authors/readers for more resources

Uniform dispersion and suitable interface are two critical issues to realize the high strengthening potential of carbon nanotubes (CNTs) in metal based composites. In this work, surface modification of CNTs was applied to simultaneously overcome these two challenges in Al matrix composites by a chemical oxidization method. It was found that the functional groups, such as hydroxyl and carboxyl groups, can be successfully decorated on the surface of CNTs by chemical oxidization, thus improving the dispersion of CNTs in ethanol. Concurrently, the morphology of oxidized CNTs and the Al-CNTs interface depend strongly on the activity of the applied oxidants. The mixture of sulphuric acid and hydrogen peroxide can slightly etch the outer walls of CNTs, which benefits the anchoring bonding between the CNTs inner walls and Al matrix, and improves the interface stability, hence exploits the load bearing capacity of the CNTs inner walls and eventually leads to the effective load transfer between Al and CNTs. The outstanding reinforcing effect of surface-modified CNTs was investigated and discussed by the strengthening models. This work provides a new approach to uniformly disperse CNTs and improve interfacial bonding for CNTs reinforced composites simultaneously. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available