4.8 Article

Graphene milling dynamics during helium ion beam irradiation

Journal

CARBON
Volume 138, Issue -, Pages 277-282

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2018.06.017

Keywords

-

Funding

  1. Laboratory Directed Research and Development Program of Oak Ridge National Laboratory

Ask authors/readers for more resources

We explore the potential of the Helium Ion Microscope (HIM) as a tool for direct-write patterning of graphene and describe the underlying processes of graphene milling with image data processing. Controlled helium ion irradiation of suspended graphene conducted while monitoring the mill in-situ revealed the localized formation of nanopores, their growth, and coalescence. We also explore the effects of defects on the milling dynamics, and show that pre-exposed membranes rupture by cracking and rapid crack propagation at the edges of the growing defects. The mechanism for the rupturing process is described by local defect formation by excessive irradiation of helium ions, dictated by the scanning direction of the beam. These findings enrich fundamental understanding of the graphene milling process with a helium ion beam that, is necessary for high-resolution and high throughput patterning of graphene with nanoscale precision. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available