4.8 Article

Explaining the role and mechanism of carbon matrices in enhancing reaction reversibility of metal oxide anodes for high performance Li ion batteries

Journal

CARBON
Volume 130, Issue -, Pages 515-524

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2018.01.059

Keywords

Conductivity; Nickel oxide; Lithium-ion; Anode; Metal oxide

Funding

  1. Ford Motor Company through the Ford University Research Program

Ask authors/readers for more resources

Using NiO as a representative oxide, it is shown that the inter-particle electronic conductivity in lithium battery anodes can be drastically enhanced by additive carbon. Two types of carbon, Vulcan XC-72R and reduced graphene oxide (rGO), were added in various amounts ranging from 2.5 to 40 wt %. The conductivity boost is highly dependent on the carbon type, where rGO requires much less addition to realize the same effect due to its higher charge carrier concentration and charge carrier utilization efficiency. Half-cell charge discharge experiments were performed at various rates between C/5 and 5C, from which direct quantitative links are made between the active layer electronic conductivity and: i) reaction reversibility (achievable capacity); and ii) conversion kinetics (mechanism and rate capability). Through Tafel analysis and electrochemical impedance spectroscopy it is shown that enhanced conductivity does not affect the underlying reaction mechanism, but allows for more complete utilization of the active layer. These findings provide new insight into the design of high performing metal oxide-advanced carbon nanocomposite Li-ion battery anodes - and allowed us to achieve long-term stable capacity retention for NiO with 10% rGO (925 mAh/g after 250 charge/discharge cycles at 1C) and stable performance at high rates (600 mAh/g at 5C). (c) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available