4.8 Article

Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors

Journal

CARBON
Volume 130, Issue -, Pages 137-144

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.12.123

Keywords

-

Funding

  1. Global Research Lab Program
  2. Basic Science Research Program through the National Research Foundation (NRF) of Korea - Ministry of Science, ICT and Future Planning [NRF-2015R1C1A02037139]
  3. Principal Research Program in the Korea Institute of Materials Science (KIMS)

Ask authors/readers for more resources

Easy shapeable highly porous and robust three dimensional (3D) nano-carbon architectures (3D NCA) are crucial for the practical applications of electrochemical energy storage devices. Here, a facile easy shapeable nitrogen-doped graphene coated 3D NCA exhibiting an ultra-high specific surface area, remarkable robustness, and excellent aqueous wettability is reported. A 3D single-walled carbon nanotube (SWCNT) hydrogel composed of isolated SWCNTs is first prepared, and then a thin polydopamine (pDA) layer is uniformly coated onto the fabricated 3D SWCNT hydrogel via an in situ polymerization of dopamine. A nitrogen-doped graphene-coated 3D NCA is obtained via pyrolysis of the pDA-coated 3D NCA. By decorating this highly porous nitrogen-doped 3D NCA onto helical micro carbon fibers, a highly stretchable (similar to 100% strain) wire-type supercapacitor (WTSC) is fabricated. The areal specific power and energy density of the WTSC are determined to be 2.59 mW cm(-2) and 1.1 mu Wh cm(-2), respectively. These values are remarkably larger than those previously reported WTSCs. Moreover, our WTSC maintains more than 91% of its capacitance after 10,000 stretch-release cycles at tensile strains of up to 50%. The combination of the easy shapeable, robust and highly porous nitrogen-doped 3D NCA paves a new way for the development of high-performance wearable textile-based energy devices. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available