4.5 Article

Permeability function for oil sands tailings undergoing volume change during drying

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 55, Issue 2, Pages 191-207

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/cgj-2016-0486

Keywords

permeability function; soil-water characteristic curve (SWCC); degree of saturation; volume change; oil sands tailings

Ask authors/readers for more resources

The coefficient of permeability function is an important unsaturated soil property required when modeling seepage and contaminant transport phenomena. Inaccuracies in the estimation of the permeability function can lead to significant errors in numerical modeling results. Changes in void ratio and degree of saturation are factors that influence the permeability function. Presently available methodologies for estimating the unsaturated permeability function make the assumption that there is no volume change as soil suction is changed. As a result, volume changes are interpreted as changes in degree of saturation. The commonly used estimation techniques for the permeability function are reasonable for soils such as sands that experience little volume change as soil suction is changed. On the other hand, inaccurate results are generated when soils undergo volume change as is the case with oil sands tailings. Revisions to previous methodologies are proposed to render the estimation of the permeability function more suitable for simulating the drying process associated with soils that undergo high volume changes. The revised methodology independently analyzes the effect of volume changes (i.e., changes in void ratio) and degree of saturation changes (i.e., changes in S-SWCC (degree of saturation - soil-water characteristic curve)). Laboratory data on thickened oil sands tailings are presented and interpreted within the context of the proposed methodology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available