3.8 Proceedings Paper

Efficient Selection Algorithm for Fast k-NN Search on GPUs

Publisher

IEEE
DOI: 10.1109/IPDPS.2015.115

Keywords

k-NN; k-selection; GPUs; Merge Queue; Buffered Search; Hierarchical Partition

Ask authors/readers for more resources

k Nearest Neighbors (k-NN) search is a fundamental problem in many computer vision and machine learning tasks. These tasks frequently involve a large number of high-dimensional vectors, which require intensive computations. Recent research work has shown that the Graphics Processing Unit (GPU) is a promising platform for solving k-NN search. However, these search algorithms often meet a serious bottleneck on GPUs due to a selection procedure, called k-selection, which is the final stage of k-NN and significantly affects the overall performance. In this paper, we propose new data structures and optimization techniques to accelerate k-selection on GPUs. Three key techniques are proposed: Merge Queue, Buffered Search and Hierarchical Partition. Compared with previous works, the proposed techniques can significantly improve the computing efficiency of k-selection on GPUs. Experimental results show that our techniques can achieve an up to 4.2x performance improvement over the state-of-the-art methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available