3.8 Proceedings Paper

Exploring Data Staging Across Deep Memory Hierarchies for Coupled Data Intensive Simulation Workflows

Ask authors/readers for more resources

As applications target extreme scales, data staging and in-situ/in-transit data processing have been proposed to address the data challenges and improve scientific discovery. However, further research is necessary in order to understand how growing data sizes from data intensive simulations coupled with the limited DRAM capacity in High End Computing systems will impact the effectiveness of this approach. In this paper, we explore how we can use deep memory levels for data staging, and develop a multi-tiered data staging method that spans both DRAM and solid state disks (SSD). This approach allows us to support both code coupling and data management for data intensive simulation workflows. We also show how an adaptive application-aware data placement mechanism can dynamically manage and optimize data placement across the DRAM and SSD storage levels in this multi-tiered data staging method. We present an experimental evaluation of our approach using two OLCF resources: an Infiniband cluster (Sith) and a Cray XK7 system (Titan), and using combustion (S3D) and fusion (XGC1) simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available