4.5 Article

The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT3 receptor expressing interneurons: An in vitro study in rat hippocampus slices

Journal

BRAIN RESEARCH
Volume 1689, Issue -, Pages 1-11

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2017.12.025

Keywords

Antidepressant; Interneurons; Pyramidal cells; Serotonin receptors

Categories

Funding

  1. H Lundbeck A/S

Ask authors/readers for more resources

The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, 5-HT1D, 5-HT3, 5-HT7 receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT3A receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT3A receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT3 receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT3 receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off rate than ondansetron in oocytes expressing 5-HT3A receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT3 receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT3A receptors. Finally, in 5-HT3 receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT3 receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT3 receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available