4.5 Article

Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 44, Issue 1, Pages 84-98

Publisher

SPRINGER
DOI: 10.1007/s10439-015-1374-8

Keywords

ATAA; Mechanical properties; Inverse method; Rupture risk

Ask authors/readers for more resources

The aim of this study is to identify the patient-specific material properties of ascending thoracic aortic aneurysms (ATAA) using preoperative dynamic gated computed tomography (CT) scans. The identification is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and gated CT measurements of the aneurysm volume at respectively systole and cardiac mid-cycle. The method is applied on five patients who underwent surgical repair of their ATAA at the University Hospital Center of St. Etienne. For these patients, the aneurysms were collected and tested mechanically using an in vitro bench. For the sake of validation, the mechanical properties found using the in vivo approach and the in vitro bench were compared. We eventually performed finite-element stress analyses based on each set of material properties. Rupture risk indexes were estimated and compared, showing promising results of the patient-specific identification method based on gated CT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available