4.6 Article

Biochemical transformation of calciprotein particles in uraemia

Journal

BONE
Volume 110, Issue -, Pages 355-367

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2018.02.023

Keywords

Calciprotein particles; Proteomics; Chronic kidney disease; Mineral; Ultrastructure; Fetuin-A

Funding

  1. Melbourne Health [GIA-015-2015]

Ask authors/readers for more resources

Calciprotein particles (CPP) have emerged as nanoscale mediators of phosphate-induced toxicity in Chronic Kidney Disease (CKD). Uraemia favors ripening of the particle mineral content from the amorphous (CPP-I) to the crystalline state (CPP-II) but the pathophysiological significance of this transformation is uncertain. Clinical studies suggest an association between CPP ripening and inflammation, vascular dysfunction and mortality. Although ripening has been modelled in vitro, it is unknown whether particles synthesised in serum resemble their in vivo counterparts. Here we show that in vitro formation and ripening of CPP in uraemic serum is characterised by extensive physiochemical rearrangements involving the accretion of mineral, loss of surface charge and transformation of the mineral phase from a spherical arrangement of diffuse domains of amorphous calcium phosphate to densely-packed lamellar aggregates of crystalline hydroxyapatite. These physiochemical changes were paralleled by enrichment with small soluble apolipoproteins, complement factors and the binding of fatty acids. In comparison, endogenous CPP represent a highly heterogeneous mixture of particles with characteristics mostly intermediate to synthetic CPP-I and CPP-II, but are also uniquely enriched for carbonate-substituted apatite, DNA fragments, small RNA and microbe-derived components. Pathway analysis of protein enrichment predicted the activation of cell death and pro-inflammatory processes by endogenous CPP and synthetic CPP-II alike. This comprehensive characterisation validates the use of CPP-II generated in uraemic serum as in vitro equivalents of their endogenous counterparts and provides insight into the nature and pathological significance of CPP in CKD, which may act as vehicles for various bioactive ligands. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available