4.6 Article

Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics

Journal

NATURE PLANTS
Volume 2, Issue 2, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/NPLANTS.2015.208

Keywords

-

Categories

Funding

  1. TRIAD Foundation
  2. US National Science Foundation [IOS-1127155]
  3. National Science Foundation Instrumentation Grant [NSF DBI-0618969]
  4. Direct For Biological Sciences
  5. Division Of Integrative Organismal Systems [1127155] Funding Source: National Science Foundation

Ask authors/readers for more resources

Arbuscular mycorrhizal symbiosis (AMS), a widespread mutualistic association of land plants and fungi(1), is predicted to have arisen once, early in the evolution of land plants(2-4). Consistent with this notion, several genes required for AMS have been conserved throughout evolution(5) and their symbiotic functions preserved, at least between monocot and dicot plants(6,7). Despite its significance, knowledge of the plants' genetic programme for AMS is limited. To date, most genes required for AMS have been found through commonalities with the evolutionarily younger nitrogen-fixing Rhizobium legume symbiosis (RLS)(8) or by reverse genetic analyses of differentially expressed candidate genes(9). Large sequence-indexed insertion mutant collections and recent genome editing technologies have vastly increased the power of reverse genetics but selection of candidate genes, from the thousands of genes that change expression during AMS, remains an arbitrary process. Here, we describe a phylogenomics approach to identify genes whose evolutionary history predicts conservation for AMS and we demonstrate the accuracy of the predictions through reverse genetics analysis. Phylogenomics analysis of 50 plant genomes resulted in 138 genes from Medicago truncatula predicted to function in AMS. This includes 15 genes with known roles in AMS. Additionally, we demonstrate that mutants in six previously uncharacterized AMS-conserved genes are all impaired in AMS. Our results demonstrate that phylogenomics is an effective strategy to identify a set of evolutionarily conserved genes required for AMS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available