4.5 Article

Innovative Hybrid Fluorocarbon Coating on UV/Ozone Surface Modified Wool Substrate

Journal

FIBERS AND POLYMERS
Volume 16, Issue 11, Pages 2416-2425

Publisher

KOREAN FIBER SOC
DOI: 10.1007/s12221-015-5120-5

Keywords

Wool; UV/Ozone; Fluorocarbon; Hybrid finishing; Surface modification; Repellency

Funding

  1. Isfahan University of Technology

Ask authors/readers for more resources

In an attempt to enhance the desired properties of textile substrates, hybrid fluorocarbon coating of the wool substrate together with UV/O-3 treatment was investigated. The application of fluorocarbons on the wool fabrics was found to have some processing problems due to the chemistry and structure of the wool fiber surface. Therefore, in this research, the use of UV/Ozone as a promising and environmentally friendly fast treatment for the surface modification of the wool substrate was studied. Both-sided UV/Ozone irradiation, in comparison to only one-sided UV/Ozone irradiation, resulted in the slightly better performance as evaluated for both pad-dry-cure and print-dry-cure fluorocarbon finishing treatments. By this novel hybrid finishing, the fabric outside finished with the fluorochemical exhibited hydrophobicity with 3M water repellency of 10 and the fabric inner side, which was in contact with the human body, kept its natural desirable moisture absorption. The UV/Ozone pre-treatment, by oxidizing the topmost layer of the fibers surface, imparted better durability of the fluorocarbon treatment to repeated washings and abrasion. However, UV/Ozone irradiation process could not overcome the drawback of fluorocarbon molecules reorientation after washing and/or abrasion, but the samples retrieved their hydrophobicity after hot-pressing. Overall, after the application of this novel method (both-sided UV/Ozone modified and then fluorochemical finish treated via the print-dry-cure process) on wool fabric, the inner side of the wool fabric, which was next to the skin, could provide desirable comforting moisture absorption for human body and protect the human skin from the negative hydrophobic effects of fluorocarbon chains; moreover, the outer side of the wool fabric exhibited highly durable (to repeated washings and abrasion) water and oil repellency properties to the outside world, helping the wool fabric display better dimensional stability with less shrinkage performance after repeated washings and higher air-permeability performance without detrimental effects on the tensile properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available