4.8 Article

Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device

Journal

BIOSENSORS & BIOELECTRONICS
Volume 101, Issue -, Pages 146-152

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2017.10.027

Keywords

Photoelectrochemical sensing; BiFeO3; Reduced graphene oxide; Prostate-specific antigen; Magnetic microfluidic device

Funding

  1. National Natural Science Foundation of China [41176079, 21475025]
  2. National Science Foundation of Fujian Province [2014J07001]
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT15R11]

Ask authors/readers for more resources

A novel magnetic controlled photoelectrochemical (PEC) sensing system was designed for sensitive detection of prostate-specific antigen (PSA) using reduced graphene oxide-functionalized BiFeO3 (rGO-BiFeO3) as the photoactive material and target-triggered hybridization chain reaction (HCR) for signal amplification. Remarkably enhanced PEC performance could be obtained by using rGO-BiFeO3 as the photoelectrode material due to its accelerated charge transfer and improved the visible light absorption. Additionally, efficient and simple operation could be achieved by introducing magnetic controlled flow-through device. The assay mainly involved in anchor DNA-conjugated magnetic bead (MB-aDNA), PSA aptamer/trigger DNA (Apt-tDNA) and two glucose oxidase-labeled hairpins (H1-GOx and H2-GOx). Upon addition of target PSA, the analyte initially reacted with the aptamer to release the trigger DNA, which partially hybridized with the anchor DNA on the MB. Thereafter, the unpaired trigger DNA on the MB opened the hairpin DNA structures in sequence and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix with numerous GOx enzymes on it. Subsequently, the enzymatic product (H2O2) generated and consumed the photo excited electrons from rGO-BiFeO3 under visible light irradiation to enhance the photocurrent. Under optimal conditions, the magnetic controlled PEC sensing system exhibited good photocurrent responses toward target PSA within the linear range of 0.001 - 100 ng/mL with a detection limit of 0.31 pg/mL. Moreover, favorable selectivity, good stability and satisfactory accuracy were obtained. The excellent analytical performance suggested that the rGO-BiFeO3-based PEC sensing platform could be a promising tool for sensitive, efficient and low cost detection of PSA in disease diagnostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available