4.8 Article

MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells

Journal

BIOSENSORS & BIOELECTRONICS
Volume 116, Issue -, Pages 81-88

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.05.045

Keywords

Anionic mental-organic frameworks; Embedding type structure; Size-selectivity; Synergistic effect; H2O2

Funding

  1. National Natural Science Foundation of China [81673392, 81373372]
  2. Natural Science Foundation of Jilin Province [20180101195JC]

Ask authors/readers for more resources

Herein, the ternary composites, ultrasmall metal nanoparticles encapsulated in the anionic metal-organic frameworks/electrochemically reduced graphene oxide (MNPs@Y-1, 4-NDC-MOF/ERGO, M = Ag, Cu) are constructed by a cationic exchange strategy and an electrochemical reduction process for the electrochemical determination of H2O2. Both AgNPs@Y-1, 4-NDC-MOF/ERGO and CuNPs@Y-1, 4-NDC-MOF/ERGO display excellent electrocatalytic activity toward H2O2, but the former is superior to the latter. Such a difference in electrocatalytic activity can be explained by the characterization measurements, and the results manifest MNPs@Y-1, 4-NDC-MOF/ERGO (M = Ag, Cu) electrocatalysts have subequal MNPs sizes and electrochemical surface areas, but different electron transfer rate constants. The AgNPs@Y-1, 4-NDC-MOF/ERGO sensor shows a linear detection range from 4 to 11,000 mu M with the detection limit of 0.18 mu M. Moreover, MNPs@Y-1, 4-NDC-MOF/ERGO (M = Ag, Cu) exhibit excellent anti-interference performance and can be used for the detection of H2O2 released from living cells. The proposed sensor takes full advantage of the catalytic property of MNPs, the size selectivity of Y-1, 4-NDC-MOF, and the fast electron transport effect of ERGO. Thus, the MNPs@Y-1, 4-NDC-MOF/ERGO/GCE (M = Ag, Cu) can be utilized to detect oxidase activities by monitoring H2O2 produced in the presence of substrate and oxidase, and it is expected that composites with the molecular sieving effect and catalytic activity can be widely applied for catalysis, biomedicine, and biosensing fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available