4.6 Article

5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats

Journal

BIOSCIENCE REPORTS
Volume 38, Issue -, Pages -

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BSR20171313

Keywords

-

Funding

  1. Carlos III Health Institute of Spain [PI13/02743, PI13/02384]
  2. Red de Investigacion Renal REDinREN [RD16/0009/0033]
  3. FEDER una manera de hacer Europa

Ask authors/readers for more resources

The aim of the present study is to analyze the effects of 5-aminoisoquinoline (5-AIQ), a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, over renal dysfunction and fibrosis during recovery phase of cisplatin (CisPt)-induced acute kidney injury (AKI) in rats. Male Wistar rats were distributed in three groups (n=8 each group): control, CisPt, and CisPt + 5-AIQ. Control and CisPt groups received a subcutaneous injection of either saline or 7 mg/kg CisPt, respectively. CisPt + 5-AIQ group received two intraperitoneal injections of 10 mg/kg 5-AIQ 2 h before and 24 h after CisPt treatment. Thirteen days after the treatment, rats were housed in metabolic cages and 24-h urine collection was made. At day 14, CisPt-treated rats showed increased diuresis, N-acetyl-beta-D-glucosaminidase (NAG) excretion, glucosuria and sodium fractional excretion (NaFE), and decreased creatinine clearance (CrCl). 5-AIQ significantly increased CrCl and decreased NAG excretion, glucosuria, and NaFE. In plasma, CisPt increased sodium, urea, and creatinine concentrations, while 5-AIQ treatment decreased these variables to the levels of control group. 5-AIQ completely prevented the body weight loss evoked by CisPt treatment. CisPt also induced an increased renal expression of PAR polymer, alpha-smooth muscle actin (alpha-SMA), transforming growth factor-beta 1 (TGF-beta 1), and collagen-IV. These variables were decreased in CisPt + 5-AIQ group. Tubular lesions and renal fibrosis were also decreased by 5-AIQ treatment. We conclude that inhibition of PARP1 with 5-AIQ can attenuate long-term nephrotoxic effects associated with the CisPt treatment, preventing renal dysfunction and body weight decrease and ameliorating tubular lesions and collagen deposition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available