4.1 Article

One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles

Journal

FEW-BODY SYSTEMS
Volume 57, Issue 1, Pages 11-43

Publisher

SPRINGER WIEN
DOI: 10.1007/s00601-015-1024-6

Keywords

-

Ask authors/readers for more resources

This is the first in a pair of articles that classify the configuration space and kinematic symmetry groups for N identical particles in one-dimensional traps experiencing Galilean-invariant two-body interactions. These symmetries explain degeneracies in the few-body spectrum and demonstrate how tuning the trap shape and the particle interactions can manipulate these degeneracies. The additional symmetries that emerge in the non-interacting limit and in the unitary limit of an infinitely strong contact interaction are sufficient to algebraically solve for the spectrum and degeneracy in terms of the one-particle observables. Symmetry also determines the degree to which the algebraic expressions for energy level shifts by weak interactions or nearly-unitary interactions are universal, i.e. independent of trap shape and details of the interaction. Identical fermions and bosons with and without spin are considered. This article sequentially analyzes the symmetries of one, two and three particles in asymmetric, symmetric, and harmonic traps; the sequel article treats the N particle case.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available