4.3 Article

PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast

Journal

FEMS YEAST RESEARCH
Volume 16, Issue 2, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/femsyr/fow007

Keywords

polyunsaturated fatty acids; oxidative stress; lipid peroxidation; protein carbonylation; caspase activation; Saccharomyces cerevisiae

Funding

  1. Novo Nordisk Center for Biosustainability
  2. Chalmers University
  3. Kristina Stenborg Foundation
  4. Sven and Lily Lawski Foundation

Ask authors/readers for more resources

Polyunsaturated fatty acids (PUFA) such as linoleic acid (LA, n-6, C18:2) and gamma-linolenic acid (GLA, n-6, C18: 3) are essential and must be obtained from the diet. There has been a growing interest in establishing a bio-sustainable production of PUFA in several microorganisms, e.g. in yeast Saccharomyces cerevisiae. However, PUFAs can also be toxic to cells because of their susceptibility to peroxidation. Here we investigated the negative effects of LA and GLA production on S. cerevisiae by characterizing a strain expressing active Delta 6 and Delta 12 desaturases from the fungus Mucor rouxii. Previously, we showed that the PUFA-producing strain has low viability, down-regulated genes for oxidative stress response, and decreased proteasome activity. Here we show that the PUFA strain accumulates high levels of reactive oxygen species (ROS) and lipid peroxides, and accumulates damaged proteins. The PUFA strain also showed great increase in metacaspase Yca1p activity, suggesting cells could die by caspase-mediated cell death. When treated with antioxidant vitamin C, ROS, lipid peroxidation and protein carbonylation were greatly reduced, and the activity of the metacaspase was significantly decreased too, ultimately doubling the lifespan of the PUFA strain. When deleting YCA1, the caspase-like activity and the oxidative stress decreased and although the lifespan was slightly prolonged, the phenotype could not be fully reversed, pointing that Yca1p was not the main executor of cell death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available